Lecture: Information Frictions and Investment

Advanced Macroeconomics 22/10/2019

Theories of investment with financial frictions:

- An important friction is asymmetric information between borrowers and lenders
 - Hidden effort (moral hazard): Potential investors (managers) must have the right incentives
 - Private information (adverse selection): Potential investors know more about the project or the firm than financiers
- This asymmetric information has implications for investment

Preview of the results:

- Key implication: Limited pledgeability and borrowing constraints:
- 1. Net worth channel in investment
- 2. Financial (balance sheet) shocks matter for macro outcomes
- **3. General equilibrium effects** (on the interest rate)
- 4. Financial accelerator

The plan is to:

- Use Holmstrom and Tirole (1998) "Private and public supply of liquidity", JPE, a moral hazard model to illustrate 1,2
- A variant of Bernanke and Gertler (1989) "Agency costs, net worth and business fluctuations" AER, to illustrate 4

Holmstrom and Tirole's moral hazard model

- Two dates: $t \in \{0,1\}$, and a single consumption good (dollar)
- Two types of agents: financiers (F) and potential investors or entrepreneurs (E).
- Both types have linear preferences: $U = C_1 + \beta C_2$
- F's have a large endowment. Competitive loan market ensures the interest rate is $1/\beta$. Later we endogenize this.
- Each E has endowment (net worth) N at date 0. Has access to a fixed scale project:
 - Investing 1 at date 0 yields output at date 1.
 - Assume 1>N so that the project needs financing

Fundamental problem: mismatch of ideas and resources

Moral hazard: E can misbehave

- Suppose project either succeeds: yielding $\frac{R}{p_{_H}}$, or fails: yielding 0.
- E may shirk and choose a different project (don't exert effort, another project, private benefits)
- Two versions of the project:

Project	Good	Bad
Private Benefit	0	B > 0
Prob. of success	$p_{\scriptscriptstyle H}$	$p_L < p_H$

Information friction: E's project choice is not observable to F's

A contract specifies the division of the output

A contract specifies the partition of the output (in case of success)
 between F and E:

$$\frac{R^F}{p_H}$$
 and $\frac{R^E}{p_H}$, with $R^F + R^E = R$

Assume

$$\beta \left(p_L \frac{R}{p_H} + B \right) < 1 < \beta R$$

• so the project is positive NPV if E behaves, but negative NPV otherwise

Constraints

F's participation constraint (PC)

$$\beta p_H \frac{R^F}{p_H} = 1 - N$$

F's receives the market return on her lending

E's incentive constraint (IC)

$$p_H \frac{R^E}{p_H} \ge p_L \frac{R^E}{p_H} + B$$

Which can be written as

$$R^E \ge \frac{p_H}{\Delta p} B$$

Next: For good management, E must have "skin in the game"

Limited pledgeability

• Combining the last inequality with $R^F + R^E = R$, we obtain the **limited pledgeability (LP) constraint**:

$$R^F \le \rho \equiv R - \frac{p_H}{\Delta p} B$$

where ρ is the (expected) pledgeable output

Limited pledgeability says that do to frictions not all returns can be promised to F

Limited pledgeability is the key difference from the frictionless benchmark

Limited pledegeability generates a borrowing constraint

Combining LP with PC, we obtain:

$$1 - N \le \beta \rho$$

Borrowing constraint: E can only borrow up to the pdv of the **pledgeable output**

- Some positive NPV projects may not be undertaken
- Whether or not this happens depends on E's net worth

And generates a "net worth channel in investment"

Rewrite the last inequality as:

$$N \ge \overline{N} = 1 - \beta \rho$$

Net worth channel:

- E's with sufficient net worth receive financing and invest
- E's with insufficient net worth, $N < \overline{N}$, are denied credit

Credit rationing: markets clear with quantities

- E's with $N < \overline{N}$ are willing to pay a higher interest rate (i.e. to promise a higher R^F)
- But F's do not accept this because of adverse incentives

Credit rationing: when prices have incentives (or information) effects, credit markets may clear with quantities rather than prices.

Holmstrom and Tirole's model: flexible scale version

- Slight difference for investment technology: scale is flexible
- Investing I units in the project yields $\frac{R}{p_H}I$ units in case of success and 0 units in case of failure
- Two versions of the project:

Project Good Bad

Private Benefit
$$0$$
 $BI > 0$

Prob. of success p_H $p_L < p_H$

Private benefit also scales up with investment (for simplicity)

E chooses the investment level and a feasible contract

- E with net worth N invests $I \geq N$. Now choice variable.
- As before, IC leads to limited pledegeability:

$$R^F \le \rho \equiv R - \frac{p_H}{\Delta p} B$$

Combined with PC generates a borrowing constraint (BC)

$$I - N \le \frac{\rho I}{1 + r}$$

• **E's problem:** Choose $I \ge N$ that maximizes her payoff, RI - (1+r)(I-N) subject to BC

Investment depends on E's net worth

- Assume: $\rho < 1 + r < R$
- RHS ensures that project is worth undertaking. LHS ensures the project is not self financing
- This implies E invests up to the maximum possible scale

$$I = \frac{N}{1 - \rho/(1+r)}$$

This is just a restatement of the net worth channel with flexible scale

• This aggregates over all E's: $I^{agg} = \frac{N^{agg}}{1 - \rho/(1+r)}$

Aggregate investment depends on the net worth of E's in the economy

Implications of the net worth channel

- Financial (balance sheet) shocks that lower E's net worth will lower investment:
 - A transfer of net worth from E's to F's (e.g. nominal contracts and Fisher's debt deflation)
 - Shocks to E's assets (e.g. subprime shock). Amplified by leverage
- Balance sheet effects will also amplify other shocks
 - Deterioration of E's net worth because of low profits in a recession
 - These 2 effects would not be present in a representative agent framework
- Next: General equilibrium implications (endogeneize the interest rate)

Equilibrium in the asset market: Supply side

- To endogeneize r, think of the equilibrium in the asset market
- Recall that the interest rate is the inverse of the asset prices
- We have the supply of assets in terms of pledgeable output)

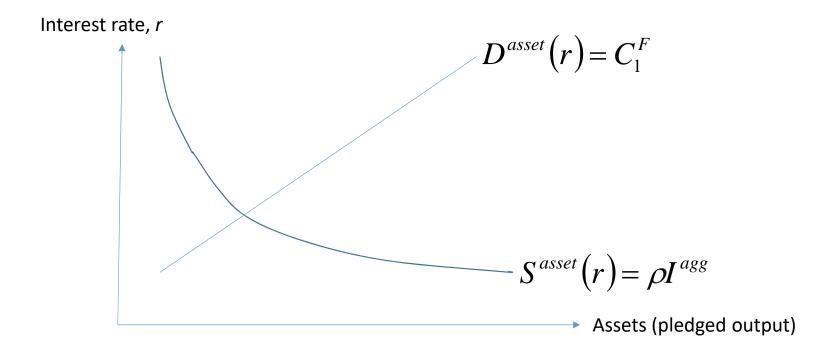
$$S^{asset}(r) = \rho I^{agg} = \frac{\rho N^{agg}}{1 - \rho/(1+r)}$$

The E's offer more assets the lower is r

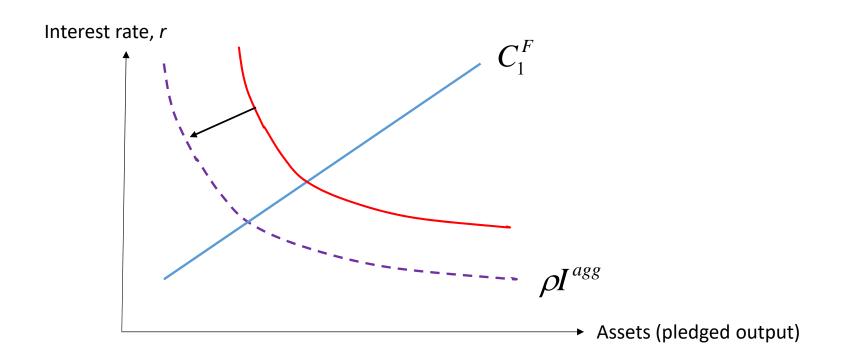
Equilibrium in the asset market: Demand side

- For the demand side suppose F's preferences are: $u(C_0^F) + \beta u(C_1^F)$
- Consider the optimal savings decision:

$$\max_{C_0^F, C_1^F} u(C_0^F) + \beta u(C_1^F)$$

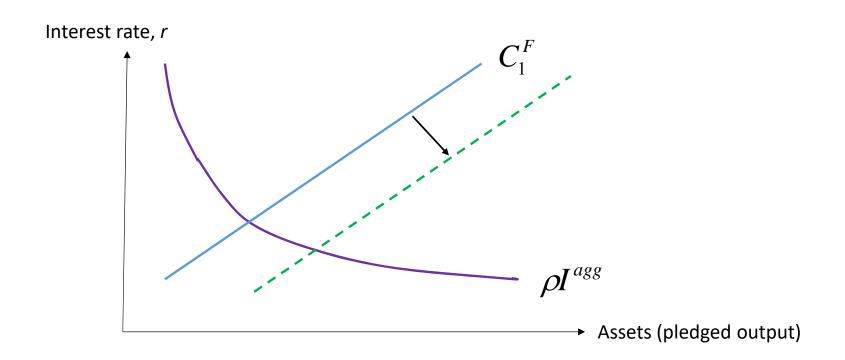

s.t.
$$C_0^F + \frac{C_1^F}{1+r} \le N^F$$

The solution is characterized by the Euler equation:


$$u'(C_0^F) = (1+r)\beta u'(C_1^F)$$

The demand for assets is given by: $D^{asset}(r) = C_1^F$ It is increasing in r

Equilibrium in the asset market



Reduction in E's net worth lowers investment, assets supply, and interest rate

A reduction in ρ has the same effect

Reduction in savings demand (i.e. precautionary motive) increases credit and lowers interest rate

Balance sheet channel has dynamic implications

 Bernanke and Gertler (1989) put financial frictions into a dynamic equilibrium macro model and emphasize the role of the balance sheet channel in the origination and the **propagation** of shocks

Persistence and propagation of shocks

- E's net worth likely to be procyclical (less solvent during bad times)
- A recession will erode net worth, which in turn will reduce investment and propagate the recession (and vice versa for boom)
- Next: Holmstrom and Tirole model in a dynamic macro environment to illustrate the propagation mechanism

Consider a standard OLG model

- Consider an OLG economy with a single consumption good (euros) and two factors: capital and labor
- Generation t agents live 2 periods: Continuum of 1 (total)
- E's and F's with preferences: $C_{t,1} + \frac{1}{1+r}C_{t,2}$, (back to exogenous r)
- Production technology (consumption): $A_t F(K_t, L_t)$
 - Suppose (for simplicity) that A_t is i.i.d. with mean \overline{A}
 - Suppose (for simplicity) that capital depreciates completely after 1 period
- Labor is supplied inelastic by the young, $L_{t} = 1$
- Factor markets are competitive:

$$R_t = A_t F_K(K_t, 1)$$
 and $W_t = A_t F_L(K_t, 1)$

Benchmark: equilibrium without frictions

- Start with a benchmark with no frictions
- Young E's have access to an investment technology: I_t (consumption good) invested at date t generate I_t/p_H units of capital date t+1 with probability p_H (0 otherwise)
- Continuum with no aggregate uncertainty implies:

$$K_{t+1} = I_t (\# \text{Entrepreneurs})$$

• Equilibrium capital found from:

$$1 + r = E[R_{t+1}] = \overline{A}F_K(K^*,1)$$

- Note that $K_{t+1} = K^*$ is independent of A_t
- Without frictions, temporary productivity shocks have no effect on investment

Introduce asymmetric information

- Assume E's have mass η , and F's have mass 1- η
- E's and F's net worth is their labor income

$$N_{t} = N_{t}^{E} = \eta w_{t}$$
 and $N_{t}^{F} = (1 - \eta)w_{t}$

E's net worth is endogenous

E's investment is subject to moral hazard

Next suppose E's are subject to moral hazard as in Holmstrom and Tirole:

Project	Good	Bad
Private Benefit	0	BI > 0
Prob. of success	$p_{\scriptscriptstyle H}$	$p_L < p_H$

Still no aggregate uncertainty (in a symmetric equilibrium)

$$K_{t+1} = I_t(1-\eta)$$

E's contract is isomorphic to previous model

Expected return from success:

$$E_{t}(R_{t+1})\frac{I_{t}}{p_{H}} = \overline{A}F_{K}(K_{t+1},1)\frac{I_{t}}{p_{H}}$$

which is deterministic

- E's private benefit: BI,
- Given N_t , E chooses the contract: $(I_t \ge N_t, R_{t+1}^{E, \text{expected}}, R_{t+1}^{F, \text{expected}})$
- To maximize her payoff subject to:
 - Resource constraint $R_{t+1}^{E, \text{expected}} + R_{t+1}^{F, \text{expected}} = E[R_{t+1}]$ (with linear prefs, exact distribution of returns not important)
 - E's (IC): $R_{t+1}^{E, \text{expected}} \ge p_H B / \Delta p$
 - F's (PC): $R_{t+1}^{F,\text{expected}}I_t = (I_t N_t)(1+r)$
- E's problem is the same as in the two period version (with ER_{t+1} replacing R)

Definition of equilibrium

- Given the initial stock of capital K_0 an equlibrium is a vector of factor allocations $\{K_t, L_t = 1\}_{t=0}^{\infty}$, prices $\{R_t, w_t\}_{t=0}^{\infty}$ and contracts $(I_t, R_{t+1}^{E, \text{expected}}, R_{t+1}^{F, \text{expected}})_{t=0}^{\infty}$ such that:
- 1. Factor markets clear
- E's in each period make their investment and contract decisions optimally
- 3. Capital evolves as $K_{t+1} = I_t(1-\eta)$

Make parametric assumption such that

$$\rho_t \equiv E_t(R_{t+1}) - \frac{p_H B}{\Delta p} < 1 + r < E_t(R_{t+1})$$

Investment is the solution to a fixed point theorem

From the earlier analysis, we have

$$K_{t+1} = \frac{(1-\eta)N_t}{1-\rho_t/(1+r)}$$

Plugging in the definition of P_t and using $E_t[R_{t+1}] = \overline{A}F_K(K_{t+1},1)$

$$K_{t+1} = \frac{(1-\eta)N_t}{1 - \left(\overline{A}F_K(K_{t+1},1) - \frac{p_H B}{\Delta p}\right)/(1+r)}$$

Under regularity conditions, there is a unique $K^{next}(.)$ s.t. $K_{t+1} = K^{next}(N_t)$ The function $K^{next}(N_t)$ is increasing in N_t

Check these claims for the Cobb Douglas case: $F(K_t,1) = K^{\alpha}$

Financial accelerator and the propagation of shocks

• Plugging in $N_t = \eta A_t F_L(K_t, 1)$ we obtain:

$$K_{t+1} = K^{next} (\eta A_t F_L(K_t, 1))$$

• **Persistency and propagation of shocks:** next period capital stock (and investment) is increasing in A_t and K_t . Temporary shocks have long lasting effects, in contrast with the frictionless benchmark:

$$A_t \downarrow \Rightarrow K_{t+1} \downarrow \Rightarrow K_{t+2} \downarrow \dots$$

• Intuition (balance sheet channel): shocks propagate through E's net worth: $A_t \downarrow \Rightarrow N_t \downarrow \Rightarrow K_{t+1} \downarrow \Rightarrow N_{t+1} \downarrow \Rightarrow K_{t+2} \downarrow \dots$

This is known as the **financial accelerator.** The particular propagation illustration in B-G (through wages) is not convincing. But the mechanism is more general.

Taking stock: Net worth channel and investment

- Asymmetric information between financiers and potential investors.
- Key implication is borrowing constraints and limited pledgeability.
 Generate:
 - Net worth channel in investment
 - Financial (balance sheet) shocks
 - **GE effects**: Tightening of constraint reduces supply of assets, increases assets prices, and lowers the interest rate
 - Financial accelerator and the propagation of shocks